Scheduler
Public Member Functions | Static Public Attributes | Protected Member Functions | Protected Attributes | List of all members
Mdp::ReinforcedLearning Class Reference

#include <reinforcedLearning.h>

Inheritance diagram for Mdp::ReinforcedLearning:
Mdp::LearningStrategy RlTester RlTester

Public Member Functions

 ReinforcedLearning (std::shared_ptr< Context > context)
 
 ~ReinforcedLearning ()
 
void initializeModel ()
 
void updateModel ()
 
void end ()
 
- Public Member Functions inherited from Mdp::LearningStrategy
 LearningStrategy (std::shared_ptr< Context > context)
 
virtual ~LearningStrategy ()
 

Static Public Attributes

static constexpr const char * configKey = "reinforcedLearning"
 

Protected Member Functions

void initializePolicy ()
 
void initializeActionSelectionStrategy ()
 
void updatePolicy (state_t state)
 
void updateLongTermReward (double reward, double discountFactor)
 
void epsilonGreedyPolicyUpdate (state_t state)
 
action_t getBestAction (state_t state)
 
RlBackupAlgorithmgetBackupAlgorithm ()
 
void printAVRecord ()
 
void updateEpsilon ()
 
void updateActualDiscountedReward (double reward)
 
void printActionValuesToFile (std::string folder)
 
action_t getBestActionFromInitialPolicy (state_t s)
 
void printStateSpace ()
 

Protected Attributes

size_t S {0}
 
size_t A {0}
 
ActionValuesFunctionactionValues {nullptr}
 
double discountFactor {0.1}
 
double alpha {0.1}
 
double alphaDecaySpeed {0.99}
 
state_t previousState
 
action_t previousAction
 
RlBackupAlgorithmbackupAlgo {nullptr}
 
ActionValuesRecord actionValuesRecord
 
long long unsigned int epsilonTimeOut {0}
 
double actualDiscountedReward {0.0}
 
Utils::Record rewardRecord
 
ActionSelectionStrategyactionSelectionStrategy {nullptr}
 
double longTermReward {0.0}
 
- Protected Attributes inherited from Mdp::LearningStrategy
std::shared_ptr< Contextcontext
 

Detailed Description

Definition at line 35 of file reinforcedLearning.h.

Constructor & Destructor Documentation

ReinforcedLearning::ReinforcedLearning ( std::shared_ptr< Context context)

Definition at line 45 of file reinforcedLearning.cpp.

ReinforcedLearning::~ReinforcedLearning ( )

Definition at line 56 of file reinforcedLearning.cpp.

Member Function Documentation

void ReinforcedLearning::end ( )
virtual

Reimplemented from Mdp::LearningStrategy.

Definition at line 285 of file reinforcedLearning.cpp.

void ReinforcedLearning::epsilonGreedyPolicyUpdate ( state_t  state)
protected

Definition at line 222 of file reinforcedLearning.cpp.

RlBackupAlgorithm * ReinforcedLearning::getBackupAlgorithm ( )
protected

Definition at line 144 of file reinforcedLearning.cpp.

action_t ReinforcedLearning::getBestAction ( state_t  state)
protected

Definition at line 279 of file reinforcedLearning.cpp.

action_t ReinforcedLearning::getBestActionFromInitialPolicy ( state_t  s)
protected

Definition at line 231 of file reinforcedLearning.cpp.

void ReinforcedLearning::initializeActionSelectionStrategy ( )
protected

Definition at line 96 of file reinforcedLearning.cpp.

void ReinforcedLearning::initializeModel ( )
virtual

Implements Mdp::LearningStrategy.

Definition at line 64 of file reinforcedLearning.cpp.

void ReinforcedLearning::initializePolicy ( )
protected

Definition at line 126 of file reinforcedLearning.cpp.

void ReinforcedLearning::printActionValuesToFile ( std::string  folder)
protected

Definition at line 299 of file reinforcedLearning.cpp.

void Mdp::ReinforcedLearning::printAVRecord ( )
protected
void ReinforcedLearning::printStateSpace ( )
protected

Definition at line 80 of file reinforcedLearning.cpp.

void ReinforcedLearning::updateActualDiscountedReward ( double  reward)
protected

Definition at line 203 of file reinforcedLearning.cpp.

void Mdp::ReinforcedLearning::updateEpsilon ( )
protected
void ReinforcedLearning::updateLongTermReward ( double  reward,
double  discountFactor 
)
protected

Definition at line 197 of file reinforcedLearning.cpp.

void ReinforcedLearning::updateModel ( )
virtual

Implements Mdp::LearningStrategy.

Definition at line 176 of file reinforcedLearning.cpp.

void ReinforcedLearning::updatePolicy ( state_t  state)
protected

Definition at line 212 of file reinforcedLearning.cpp.

Member Data Documentation

size_t Mdp::ReinforcedLearning::A {0}
protected

Definition at line 47 of file reinforcedLearning.h.

ActionSelectionStrategy* Mdp::ReinforcedLearning::actionSelectionStrategy {nullptr}
protected

Definition at line 74 of file reinforcedLearning.h.

ActionValuesFunction* Mdp::ReinforcedLearning::actionValues {nullptr}
protected

Definition at line 55 of file reinforcedLearning.h.

ActionValuesRecord Mdp::ReinforcedLearning::actionValuesRecord
protected

Definition at line 66 of file reinforcedLearning.h.

double Mdp::ReinforcedLearning::actualDiscountedReward {0.0}
protected

Definition at line 71 of file reinforcedLearning.h.

double Mdp::ReinforcedLearning::alpha {0.1}
protected

Definition at line 58 of file reinforcedLearning.h.

double Mdp::ReinforcedLearning::alphaDecaySpeed {0.99}
protected

Definition at line 59 of file reinforcedLearning.h.

RlBackupAlgorithm* Mdp::ReinforcedLearning::backupAlgo {nullptr}
protected

Definition at line 63 of file reinforcedLearning.h.

constexpr const char* Mdp::ReinforcedLearning::configKey = "reinforcedLearning"
static

Definition at line 38 of file reinforcedLearning.h.

double Mdp::ReinforcedLearning::discountFactor {0.1}
protected

Definition at line 57 of file reinforcedLearning.h.

long long unsigned int Mdp::ReinforcedLearning::epsilonTimeOut {0}
protected

Definition at line 69 of file reinforcedLearning.h.

double Mdp::ReinforcedLearning::longTermReward {0.0}
protected

Definition at line 75 of file reinforcedLearning.h.

action_t Mdp::ReinforcedLearning::previousAction
protected

Definition at line 62 of file reinforcedLearning.h.

state_t Mdp::ReinforcedLearning::previousState
protected

Definition at line 61 of file reinforcedLearning.h.

Utils::Record Mdp::ReinforcedLearning::rewardRecord
protected

Definition at line 72 of file reinforcedLearning.h.

size_t Mdp::ReinforcedLearning::S {0}
protected

Definition at line 46 of file reinforcedLearning.h.


The documentation for this class was generated from the following files: